9,696 research outputs found

    Elastic Lennard-Jones Polymers Meet Clusters -- Differences and Similarities

    Full text link
    We investigate solid-solid and solid-liquid transitions of elastic flexible off-lattice polymers with Lennard-Jones monomer-monomer interaction and anharmonic springs by means of sophisticated variants of multicanonical Monte Carlo methods. We find that the low-temperature behavior depends strongly and non-monotonically on the system size and exhibits broad similarities to unbound atomic clusters. Particular emphasis is dedicated to the classification of icosahedral and non-icosahedral low-energy polymer morphologies.Comment: 9 pages, 17 figure

    Thermodynamics of polymer adsorption to a flexible membrane

    Get PDF
    We analyze the structural behavior of a single polymer chain grafted to an attractive, flexible surface. Our model is composed of a coarse-grained bead-and-spring polymer and a tethered membrane. By means of extensive parallel tempering Monte Carlo simulations it is shown that the system exhibits a rich phase behavior ranging from highly ordered, compact to extended random coil structures and from desorbed to completely adsorbed or even partially embedded conformations. These findings are summarized in a pseudophase diagram indicating the predominant class of conformations as a function of the external parameters temperature and polymer-membrane interaction strength. By comparison with adsorption to a stiff membrane surface it is shown that the flexibility of the membrane gives rise to qualitatively new behavior such as stretching of adsorbed conformations

    Further evidence of the circulation of PMV-4 and influenza viruses with N2 - 1957 enzyme in migratory waterfowls

    Get PDF
    I n the years 1980—1984, one paramyxovirus type 4 and 11 influenza viruses were isolated from cloacal swabs collected from migratory waterfowls in Fed. Rep. Germany. One influenza virus of H4N8 subtype was isolated from swabs of commercial ducks collected at an abbatoir. Seven of 10 influenza strains, isolated from mallard clucks and coot were identified as a mixture of 2 —3 strains of H l , H4, and Ho subtype; 3 virus strains from the same locality relate antigenically to subtype H4 w i t h enzyme serologically identical with N2 — Singapore/57 as demonstrated by means of polyclonal and monoclonal antibody

    Conformational Mechanics of Polymer Adsorption Transitions at Attractive Substrates

    Full text link
    Conformational phases of a semiflexible off-lattice homopolymer model near an attractive substrate are investigated by means of multicanonical computer simulations. In our polymer-substrate model, nonbonded pairs of monomers as well as monomers and the substrate interact via attractive van der Waals forces. To characterize conformational phases of this hybrid system, we analyze thermal fluctuations of energetic and structural quantities, as well as adequate docking parameters. Introducing a solvent parameter related to the strength of the surface attraction, we construct and discuss the solubility-temperature phase diagram. Apart from the main phases of adsorbed and desorbed conformations, we identify several other phase transitions such as the freezing transition between energy-dominated crystalline low-temperature structures and globular entropy-dominated conformations.Comment: 13 pages, 15 figure

    Multicanonical Study of Coarse-Grained Off-Lattice Models for Folding Heteropolymers

    Full text link
    We have performed multicanonical simulations of hydrophobic-hydrophilic heteropolymers with two simple effective, coarse-grained off-lattice models to study the influence of specific interactions in the models on conformational transitions of selected sequences with 20 monomers. Another aspect of the investigation was the comparison with the purely hydrophobic homopolymer and the study of general conformational properties induced by the "disorder" in the sequence of a heteropolymer. Furthermore, we applied an optimization algorithm to sequences with up to 55 monomers and compared the global-energy minimum found with lowest-energy states identified within the multicanonical simulation. This was used to find out how reliable the multicanonical method samples the free-energy landscape, in particular for low temperatures.Comment: 11 pages, RevTeX, 10 Postscript figures, Author Information under http://www.physik.uni-leipzig.de/index.php?id=2

    Microcanonical entropy inflection points: Key to systematic understanding of transitions in finite systems

    Full text link
    We introduce a systematic classification method for the analogs of phase transitions in finite systems. This completely general analysis, which is applicable to any physical system and extends towards the thermodynamic limit, is based on the microcanonical entropy and its energetic derivative, the inverse caloric temperature. Inflection points of this quantity signal cooperative activity and thus serve as distinct indicators of transitions. We demonstrate the power of this method through application to the long-standing problem of liquid-solid transitions in elastic, flexible homopolymers.Comment: 4 pages, 3 figure

    Bankrupting terrorism: the role of US anti-terrorism litigation in the prevention of terrorism and other hybrid threats: a legal assessment and outlook

    Get PDF
    Global terrorist networks are dependent on receiving financial support from a variety of sources, including individuals, charities and corporations. Also known as terrorist financing, the potential of terrorism finance to resemble a global threat has been recognised and also its closeness to other international crimes such as money laundering and organized crime. As a result, possible responses have to constitute co-ordinated, multi-lateral and multi faceted actions under the umbrella of a wide range of international stakeholders such as the United Nations Security Council and the Financial Action Task Force. Combating terrorism requires a ‘holistic’ approach which allows for a mix of possible responses. Besides “kinetic” security operations (such as targeted killings) and the adoption of criminal prosecution measures another possible response could be the use of US styled transnational civil litigation by victims of terrorism against both, terrorist groups and their sponsors. Corporations, both profit and non profit, such as banks and other legal entities, as well as individuals, are often complicit in international terrorism in a role of aiders and abettors by providing financial assistance to the perpetrators (cf. UN Al-Qaida Sanctions List: The List established and maintained by the 1267 Committee with respect to individuals, groups, undertakings and other entities associated with Al-Qaida). Such collusion in acts of terrorism gains additional importance against the background of so called “Hybrid Threats”, NATO’s new concept of identifying and countering new threats arising from multi-level threat scenarios. This article discusses the potential impact of US terrorism lawsuits for the global fight against terrorism

    Overdetermined Steady-State Initialization Problems in Object-Oriented Fluid System Models

    Get PDF
    The formulation of steady-state initialization problems for fluid systems is a non-trivial task. If steady-state equations are specified at the component level, the corresponding system of initial equations at the system level might be overdetermined, if index reduction eliminates some states. On the other hand, steady-state equations are not sufficient to uniquely identify one equilibrium state in the case of closed systems, so additional equations are required. The paper shows how these problems might be solved in an elegant way by formulating overdetermined initialization problems, which have more equations than unknowns and a unique solution, then solving them using a least-squares minimization algorithm. The concept is tested on a representative test case using the OpenModelica compiler

    Pore-scale mass and reactant transport in multiphase porous media flows

    Get PDF
    Reactive processes associated with multiphase flows play a significant role in mass transport in unsaturated porous media. For example, the effect of reactions on the solid matrix can affect the formation and stability of fingering instabilities associated with the invasion of a buoyant non-wetting fluid. In this study, we focus on the formation and stability of capillary channels of a buoyant non-wetting fluid (developed because of capillary instabilities) and their impact on the transport and distribution of a reactant in the porous medium. We use a combination of pore-scale numerical calculations based on a multiphase reactive lattice Boltzmann model (LBM) and scaling laws to quantify (i)the effect of dissolution on the preservation of capillary instabilities, (ii)the penetration depth of reaction beyond the dissolution/melting front, and (iii)the temporal and spatial distribution of dissolution/melting under different conditions (concentration of reactant in the non-wetting fluid, injection rate). Our results show that, even for tortuous non-wetting fluid channels, simple scaling laws assuming an axisymmetrical annular flow can explain (i)the exponential decay of reactant along capillary channels, (ii)the dependence of the penetration depth of reactant on a local Péclet number (using the non-wetting fluid velocity in the channel) and more qualitatively (iii)the importance of the melting/reaction efficiency on the stability of non-wetting fluid channels. Our numerical method allows us to study the feedbacks between the immiscible multiphase fluid flow and a dynamically evolving porous matrix (dissolution or melting) which is an essential component of reactive transport in porous medi

    The Bag320 satellite DNA family in Bacillus stick insects (Phasmatodea): Different rates of molecular evolution of highly repetitive DNA in bisexual and parthenogenetic taxa

    Get PDF
    The Bag320 satellite DNA (satDNA) family was studied in seven populations of the stick insects Bacillus atticus (parthenogenetic, unisexual) and Bacillus grandii (bisexual). It was characterized as widespread in all zymoraces of B. atticus and in all subspecies of B. grandii. The copy number of this satellite is higher in the bisexual B. grandii (15%-20% of the genome) than in the parthenogenetic B. atticus (2%- 5% of the genome). The nucleotide sequences of 12 Bag320 clones from B. atticus and 17 from B. grandii differed at 13 characteristic positions by fixed nucleotide substitutions. Thus, nucleotide sequences from both species cluster conspecifically in phylogenetic dendrograms. The nucleotide sequences derived from B. grandii grandii could he clearly discriminated from those of B. grandii benazzii and B. grandii maretimi on the basis of 25 variable sites, although all taxa come from Sicily. In contrast, the Bag320 sequences from B. atticus could not he discriminated accordingly, although they derive from geographically quite distant populations of its three zymoraces (the Italian and Greek B. atticus atticus, the Greek and Turkish B. atticus carius, and the Cyprian B. atticus cyprius). The different rate of evolutionary turnover of the Bag320 satDNA in both species can he related to their different modes of reproduction. This indicates that meiosis and chromosome segregation affect processes in satDNA diversification
    corecore